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role in the formation of membrane microdomains ( 1 ). 
Until now, only very limited and expensive sources of la-
beled cholesterol were available. Cholesterol enriched at 
carbons 3 and 4 or 23–27 are commercially available, but 
other positions require de novo biosynthesis. Small amounts 
of low-enrichment cholesterol have been obtained in vivo 
by skin injection of enriched mevalonate in rat ( 2 ) or feed-
ing mammals and humans with  13 C enriched precursors 
( 3, 4 ). An in vitro alternative based on human hepatoma 
Hep G2 cells cultures ( 5 ) produces small amounts of cho-
lesterol with higher enrichment levels, but if these meth-
ods can produce samples for MS analysis and  14 C labeling, 
they are not effi cient enough for NMR applications. We 
have previously engineered a  Saccharomyces cerevisiae  strain 
by deleting the  ERG5  and  ERG6  genes and introducing 
plasmids that express the DHCR7 and DHCR24 genes 
from  Danio rerio , leading to the synthesis of cholesterol ( 6 ). 
Subsequently, we integrated cassettes expressing DHCR7 
and DHCR24 into the  ERG5  and  ERG6  loci, creating dele-
tions of the latter genes, to create a more stable strain that 
effi ciently produces cholesterol as its major (<95%) ste-
rol ( 7 ). The metabolically engineered yeast use the same 
biosynthesis pathway as animals (  Fig. 1  )  and effi ciently 
produce  13 C-enriched cholesterol with different labeling 
pat terns with a yield of  � 1 mg of cholesterol per gram of 
glucose in 100 ml of culture medium. 

 EXPERIMENTAL PROCEDURES 

 Materials 
 The  Saccharomyces cervisiae  strain used was RH6829 (MATa  ura3 

leu2 his3 trp1 bar1 erg5 �  ::HIS5-GPD-DHCR24  erg6 �  ::TRP1-GPD-
DHCR7 ( 7 ). Yeast nitrogen base and yeast extracts were obtained 
from US Biological and Difco, respectively. D-glucose (99%), leu-
cine (95%), and uracil (99%) were obtained from Aristar, Fluka, 
and Sigma, respectively. The pyrogallol and petroleum ether 
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 Sterols are important lipids in most eukaryotes. In par-
ticular, cholesterol has attracted a lot of attention because 
of its involvement in cardiovascular diseases in humans 
and because it has been suggested to play an important 
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centrifuged, and the soluble extract was applied to an Uptisphere 
120A 5  � m ODB column (Laubscher Labs, Switzerland) and 
eluted isocratically with 70% acetonitrile/30% ethanol (v/v). 
The cholesterol peak was identifi ed by spotting 5  � l onto a TLC 
plate. The TLC plate was immersed in staining solution (50 mg 
FeCl 3 :6H 2 O, 90 ml H 2 O, 5 ml glacial acetic acid, 5 ml sulfuric 
acid) for 1 min, then heated for 3 min at 110°C and scanned. The 
cholesterol peak fractions were pooled and dried under 
nitrogen. 

 NMR analysis 
 All the NMR measurements were performed at 37°C on a 

Bruker Avance-III 500 MHz spectrometer equipped with a TCI 
low-temperature probe. The 5.5 mg of 94% labeled cholesterol, 
5 mg of 10% labeled cholesterol, and the 1.7 mg of “1-C” labeled 
cholesterol were dissolved in 0.6 ml CDCl 3  separately. The proton-
decoupled  13 C experiment was recorded in 512 scans with a 
236 ppm window, 3 s recycling delay, and 10  � s hard pulses. 

 GC-MS analysis 
 Samples were dissolved in chloroform:methanol (1:1) and in-

jected into a VARIAN CP-3800 Gas Chromatograph equipped 
with a Factor Four Capillary Column VF-5ms 15 m × 0.32 mm ID 
DF = 0.10 and analyzed by a Varian 320 MS triple quadrupole   
with electron energy set to  � 70 Ev at 200°C. Sterols were eluted 
with a linear gradient from 195–230°C at 4°C per min ( 7 ). 

 RESULTS AND DISCUSSION 

 The effi ciency of the conversion of  13 C glucose into cho-
lesterol was tested using ( u-  13 C 6 , 99%) glucose. The me-
dium, including 6.75 g of enriched glucose as a carbon 
source, produced about 5.5 mg of cholesterol with 92% 
 13 C enrichment. The most abundant isotopomer was the 
fully-enriched ( u-  13 C 27 ) cholesterol, and a simulation of 
the mass distribution (see supplementary Fig. I) indicates 
that the presence of 2.25 g of yeast extract with the 6.75 g 
of enriched glucose in the medium corresponded only to 
about 8% dilution of the isotope source. Only 2% of mass 
corresponds to the light isotopomers of natural-abundance 
cholesterol (386 and 387). The rest shows the predicted 
distribution of heavy isotopomers decreasing from 413 
mass units. The nearly total independence of the metabo-
lism of cholesterol relative to the presence of yeast extract 
explains this small contribution and makes it unnecessary 
to use more sophisticated culture protocols ( 8, 9   ) used for 
the biosynthesis of  13 C or  15 N enriched proteins or meta-
bolic studies. This contamination would, however, be a 
problem for use as an internal standard for MS applica-
tions and could be circumvented by preparation of a small 
preculture in  13 C medium to use for inoculation. 

 The proton-decoupled carbon spectrum is shown in   Fig. 
2   A    where the  13 C- 13 C coupling patterns are clearly visible. 
When recording carbon spectra at low resolution, signals 
have up to four one-bond coupling partners resulting in 
quintet-like structures because the resolution is not high 
enough to resolve the slightly different values of the  1 J CC  
couplings. In high-resolution spectra, whether it is a 1D { 1 H} 
 13 C spectrum or high-resolution HSQC, 40 additional cou-
plings larger than 1 Hz further increase the multiplicities or 
broaden signals. (See DFT-GIAO calculations of J CC  in 

with high boiling point (b.p. 40–60) come from Sigma and potas-
sium hydroxide (85%) and methanol were obtained from Acros. 
All enriched sources of glucose and chloroform-D (99.8%) were 
purchased from Cambridge Isotope Laboratory. 

 Preparation of media 
 Three samples of cholesterol were prepared. The 94% en-

riched cholesterol was prepared in a 450 ml medium containing 
0.7% yeast nitrogen base, 0.5% yeast extracts, and 1.5% (6.75 g) 
( u-  13 C 6 , 99%) glucose. It was mixed under magnetic stirring and 
fi lter sterilized. A 4.5 ml solution of leucine and uracil was added 
from a 10× stock solution at 0.4 mg/l. The production medium 
was inoculated with 45  � l (1:10000) RH6829 saturated yeast cul-
ture and incubated at 30°C in a 3-l fl ask for two days with shaking 
at 230 rpm. We obtained  � 5.5 mg of cholesterol after lipid ex-
traction (see below). The 10% enriched cholesterol was prepared   
from 2.5 l medium where 9.90 g of ( u-  13 C 6 , 24.0%) was diluted 
with 15.0 g of natural-abundance glucose (1%). For growth the 
medium was split into three fl asks. We obtained  � 46 mg of cho-
lesterol. The partially labeled cholesterol was prepared in 300 ml 
medium (0.7% yeast nitrogen base, 0.5% yeast extract) at 1% glu-
cose concentration. A total of 0.98 g of (1 -  13 C 1 , 98.1%) was di-
luted with 2 g of natural-abundance glucose and resulted in 1.7 
mg of cholesterol enriched at the position of the empty circles in 
 Fig. 1 . 

 Lipid extraction 
 Cholesterol extraction and purifi cation was performed as pre-

viously described ( 7 ). Briefl y, the saturated culture media were 
centrifuged at 3,000 rpm for 5 min and the cells harvested and 
washed with water in glass tubes. The cells were resuspended with 
1 ml 60% potassium hydroxide, 1 ml of 0.5% pyrogallol in metha-
nol, and 1.5 ml methanol in screw-cap glass tubes and incubated for 
2 h at 85°C, tightly closed. Sterols were extracted three times with 
2 ml fractions of petroleum ether. The petroleum ether phases were 
evaporated under nitrogen fl ow and the samples stored at  � 80°C. 

 The cholesterol was then purifi ed using a C18 reversed-phase 
column by HPLC. The extracts were dissolved in acetone at 45°C, 

  Fig.   1.  Biosynthetic pathway of cholesterol produced by yeast 
grown on a glucose medium. Rounded frames indicate the 11 pairs 
of carbons stemming from glucose through acetyl CoA ( 3 ). Filled 
and empty dots correspond to the carbonyl and the Me of ( 3 ) re-
spectively. Of the 54 carbons of glucose needed to make choles-
terol, 18 are lost during entry into the citric acid cycle and six when 
mevalonate ( 4 ) is decarboxylated. Finally, three methyl groups are 
further removed after the cyclization of squalene ( 6 ) while Me(18) 
migrates from C(14) to C(13).   
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with different isotope distributions   listed in   Table 1  .  For 
HSQC and related experiments (HSQC-NOESY, etc.) one 
usually wants to obtain singlets with maximal intensities 
and minimize additional doublet or triplet due to  13 C cou-
pling partners. For these experiments the maximal pro-
portion of singlet (7–15%) can be obtained with 20–30% 
average enrichment using diluted ( u-  13 C 6 , 25%) glucose. 
(See the discussion in the supplementary data and supple-
mentary Figs. II–IV for more details about the distribution 
of multiplicities as a function of the level of enrichment 
and dilution of labeled glucose.) We produced 10% uni-
formly enriched cholesterol by mixing ( u-  13 C 6 , 24.0%) 
with 1.5 equivalents of natural-abundance ( u-  13 C 6 , 1.07%) 

supplementary Table I.) The most extreme situations arise 
for carbons 6, 8, 13, and 14 that are expected to have eight 
coupling partners with J CC  > 1 Hz resulting in transitions 
down to 1/256th the amplitude they would have as singlets. 
In terms of sensitivity, the paradox is that for some carbons, 
the fully-enriched material is expected to show less intense 
signals than natural-abundance cholesterol. In order to ob-
serve intense singlets, one should either use NMR methods 
able to refocus or decouple  13 C- 13 C couplings or reduce the 
level of enrichment. The fi rst being outside the scope this 
paper, we concentrated on the second option. 

 Having a method with nearly quantitative enrichment 
effi ciency in hand, we could envisage to produce samples 

  Fig.   2.  { 1 H}  13 C spectra of cholesterol produced using (A) ( u - 13 C 6 , 99%) glucose, (B) 2:3 ( u - 13 C 6 -, 24%)/( u - 13 C 6 , 1.07%) glucose, and (C) 
1:2 (1- 13 C 1 , 99%)/(u- 13 C 6 , 1.07%) glucose. In A, all carbons exhibit a multiplet pattern due to the  n   1 J CC  of the fully enriched isotopomer 
(for example, the doublet of carbon 18) overlapping with minor structures corresponding to  n -1 couplings (the singlet between the lines 
of the doublet of carbon 18) with a relative integral of  c.a.  6%. The structure of the carbon 6 corresponds to a ABKX spin system where A 
and B are the strongly coupled carbons 7 and 8. Carbons 9 and 14 are also affected by these nearly degenerated resonances. Carbon pairs 
20/22, and 1/10 also show some second-order effects but they are not strong enough to signifi cantly affect remote coupling partners. All 
carbons in B have singlet structures but satellite signals due to  1 J CC  are observed for the carbon pairs originating from the same glucose 
(rounded frames of  Fig. 1 ). Carbons 7 and 8 are so strongly coupled that they come out as a singlet. In C, only carbons 13, 17, and 18 show 
satellite structures because they are directly bound to enriched positions (empty circles in  Fig. 1 ).   

 TABLE 1. Conditions for the production of enriched cholesterol and applications 

Av.% of  13 C Multiplicity

Applications and Remarks

Growth Medium Cholesterol
( 1 J CC ) ( n J CC )  a  

Labeled glucose
Dilution Lab./

Nat. (g)
Enrichment in

% (g)  s  d  s  d 

( u-  13 C 6 , 99%) 1:0 (6.75 g) 94  b   (5.4 mg) 0.5  c  20.6  d  0.0  c  1.1 Experiments not affected by dense  13 C- 13 C coupling 
 networks

(u- 13 C 6 , 99%) 1:0.5 65.9 3.0 25.1 0.7 5.2 DQ experiments  e  
(u- 13 C 6 , 99%) 1:2 32.2 4.5 18.3 2.1 8.7 DQ experiments  e  
(u- 13 C 6 , 99%) 1:8.5 10.09 2.5 6.4 2.2 5.3 DQ experiments  e  
(u- 13 C 6 , 24.0%) 2:3 (9.9:15 g) 9.49 (46 mg) 6.8 2.5 6.6 3.3 For all C for SQ experiments  f  
(1-C- 13 C 6 , 99%) 1:0 27.25 45.0 2.7 35.5 8.9 For C 1, 3, 5, 7, 9, 15, 19, 21, 22, 24, 26, 27 at low res. SQ  g  
(1-C- 13 C 6 , 99%) 1:2(1 g/2 g) 8.94 (1.7 mg) 15.1 0.3 13.9 1.8 For C 1, 3, 5, 7, 9, 15, 19, 21, 22, 24, 26, 27 at low-res SQ  g  
(2-C- 13 C 6 , 99%) 1:0 22.11% 47.6 1.3 25.8 15.0 For C 2, 4, 6, 10, 16, 20, 23, 25 at low-res SQ  g  
(2-C- 13 C 6 , 99%) 1:2 7.34% 13.2 0.9 10.3 14.7 For C 2, 4, 6, 8, 10, 11, 13, 14, 16, 20, 23, 25 at low-res SQ  g  

  a   The criterion for split is J CC  > 1 Hz.
  b   Based on MS data. The yeast extract decreased slightly the enrichment level.
  c   High-multiplicity spectra, negligible amount of singlets.
  d   This is due to the 5 methyls coupling with unit probabilities with their directly-bound carbons.
  e   “DQ” stands for experiments based on  13 C- 13 C double quantum coherences (ADEQUATES, INADEQUATES, etc.).
  f   “SQ” stands for experiments based on isolated  13 C (HSQC,  13 C spectra, DEPT, etc.).
  g   J CC  > 25 Hz.
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glucose. On average, about 6.8% of the carbons come as 
singlets (see the distribution in supplementary Fig. V) 
whereas the proportion of doublets due to  1 J CC  should be 
close to 2.45%, which is not disturbing as these doublets 
spread their intensities over pairs of peaks ( Fig. 2B ). 

 The alternation of carbons stemming from the methyl 
and carbonyl of acetyl CoA in the precursor 5 (see  Fig. 1 ) 
and the availability of (1- 13 C 1 , 99%) and (2- 13 C 1 , 99%) glu-
cose makes it possible to signifi cantly increase the propor-
tion of singlets by selectively labeling either the fi lled or 
the empty carbons of  Fig. 1 . With singly-labeled glucose, 
the maximum level of enrichment can reach  c.a.  50% (see 
supplementary Figs. VI and VII) because carbons 5 and 6 
of glucose accounting for half of the AcCoA are not 
enriched. We produced cholesterol with  � 9% average 
enrichment diluting (1- 13 C 1 , 99%) glucose with natural-
abundance glucose 1:2. The amplitudes of the singlets 
were about 11–15% of the maximum for all carbons, ex-
cept for carbon 13 where 6% of the maximal amplitude 
was predicted by calculations (see  Fig. 2C ). 

 An alternative and possibly more effective approach is 
to take advantage of the tendency of the biosynthetic path-
way to generate pairs of enriched positions and chose 
NMR experiments based on  13 C- 13 C double-quantum mag-
netization. The dilution of ( u-  13 C 6 , 99%) glucose allows 
reaching a proportion of doublet of about 25% at 65.87% 
enrichment, which is comparable with 0.01% at natural 
abundance. (See the supplementary discussion and sup-
plementary Figs. IV and III). 

 The availability of enriched cholesterol for NMR exper-
iments should fi nd many applications in liquid and 
solid-state NMR but also in the more specialized meth-
ods studying membranes and liquid crystals. The dynamics 
of cholesterol, the observation of changes in its chemical 
environment, and the structure determination of com-
plexes should all benefi t from enrichment and contribute 
to elucidate some of the unresolved questions concerning 
cholesterol. The protocol can be extended to other sterols 

produced in yeast, for example, ergosterol, the natural ste-
rol, and campesterol, which can also be effi ciently pro-
duced in genetically modifi ed yeast.  

 Rupali Shivapurkar thanks J. Thomas Hannich for help with 
sterol isolation, Mohammadali Foroozandeh for the NMR 
experiment set-up help, and André Pinto for assistance on the 
NMR spectrometer. 
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